ต์

27. Let p be a prime number. If p divides the product $a b$, then p divides either a or b.
Proof. If p does not divide a, then
$G C D(a, p)=1$. (Explain why.)
Therefore, $1=\mathrm{sa}+\mathrm{pt}$
for some integers s and p.
(See Exercise 26.) Thus

$$
\begin{aligned}
b & =b(s a+p t) \\
& =(a b) s+b p t \\
& =(k p) s+b p t \\
& =p(k s+b t) .
\end{aligned}
$$

This implies that p divides b.
28. Let p be a prime number. Then \sqrt{p} is an irrational number. -
Proof. We assume that \sqrt{p} is a rational number, that is

$$
\sqrt{p}=\frac{n}{q}
$$

with $n \neq 0, q \neq 0, n$ and q integres, with the fraction written in reduced form. (See the front of the book on rational numbers.) Therefore,

Thus

$$
p=\frac{n^{2}}{q^{2}} .
$$

$$
n^{2}=p q^{2}
$$

As n^{2} is a multiple of p, which is a prime number, then n must be a multiple of p.

$$
\begin{aligned}
& \text { اثبات: اگر p عاد نكند، a,p)=1 را، در اين صورت: } \\
& \text { (توضيح دهيد پرا). بنابراین، براى اعدادى صحيح چون } \\
& \text { S و t داريم: } \\
& 1=\mathrm{sa+pt} \quad \text { (تمرين צז, ارا ملاحظه كنيد) } \\
& \Rightarrow \mathrm{b}=\mathrm{b}(\mathrm{sa}+\mathrm{pt})=(\mathrm{ab}) \mathrm{s}+(\mathrm{bp}) \mathrm{t}=(\mathrm{kp}) \mathrm{s}+\mathrm{bpt} \\
& =p(k s+b t) \text {. } \\
& \text { تساوى اخير نشان مىدهد كه b، b , را عاد مى كند. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { عددى گنْگ است. } \\
& \text { اثبات: فرض مى كنيم كه }
\end{aligned}
$$

$$
\begin{aligned}
& \text { صحيح هســتنـد به قســمىى كه كســر (حاصل از آنها) } \\
& \text { تحويلناپذير (به ســـادهترين صورت نوشته شده) است. } \\
& \text { بنابراين: } n^{r}=\mathrm{pq}^{r}
\end{aligned}
$$

جــون n ${ }^{\text { }}$ مضرب p باشد. (تمرين YV ا ا ملاحظه كنيد.). بنابراين مى موانيم بنويسيم: n=pk. براى عددى صحيح و مثبت

 براى عددى صحيح و مثبت مانند m مىتوانيهم بنويسيم:
$\frac{\mathrm{n}}{\mathrm{q}}=\frac{\mathrm{pk}}{\mathrm{pm}}=\frac{\mathrm{k}}{\mathrm{m}}$
$\frac{n}{q}$ اين موضــوع با فرض تحويلناپذير بودن كســر
 :q=pm

ايستگاه اول:

 مراجعه كنيد.

كلمهها و اصطلاحات مههم

1. Prime number عدد اول
2. Divides عاد مى كند
3. Product حاصل
4. Irrational گَنگا، ناگويا
5. Rational number عدد گويا
6. Fraction كسر
7. Multiple مضرب
8. Positive integer صحيحِ مثبت
9. Contradict تناقض

(See Exercise 27.) Therefore we can write $n=p k$ for some positive integer k. This implies

$$
p^{2} k^{2}=p q^{2}
$$

or

$$
p k^{2}=q^{2} .
$$

As q^{2} is a multiple of p, which is a prime number, then q must be a multiple of p. (See Exercise 27.) Therefore we can write $q=p m$ for some positive integer m. Therefore

$$
\frac{n}{q}=\frac{p k}{p m}=\frac{k}{m}
$$

This contradicts the fact that the fraction n / q is already in reduced form, and proves that \sqrt{p} is an irrational number.

